• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Data Viz with Python and R

Learn to Make Plots in Python and R

  • Home
  • Python Viz
  • Seaborn
  • Altair
  • R Viz
  • ggplot2
  • About
    • Privacy Policy
  • Show Search
Hide Search

How to make Annotated heatmap with Seaborn in Python

datavizpyr · September 11, 2024 ·

In this post, we will learn how to make annotated heatmap using data visualization package Seaborn in Python. We will use Seaborn’s heatmap() function to make a heatmap first. Next we will show how to annotate the heatmap with simple text. And finally we will show how to add annotation with percent symbol to heatmap.

Let us load the packages needed.

import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

We will use the S&P index’s monthly returns data from year 2000 to make a heatmap. We will load the data directly from the web. And the data looks like this.

sp500_long = pd.read_csv("SP500_monthly_returns.tsv", sep="\t")
sp500_long.head()

          date. 	returns	      month	year
0	2000-01-31	-0.041753	January	2000
1	2000-02-29	-0.020108	February	2000
2	2000-03-31	0.096720	March	2000
3	2000-04-28	-0.030796	April	2000
4	2000-05-31	-0.021915	May	2000

Let us reshape the data to a matrix form with months on rows and year as columns using Pandas’ pivot() function. And also convert the returns to percentage by multiplying by 100.

sp500 = (
    sp500_long
    .pivot(index="month", columns="year", values="returns")
)
sp500 = sp500*100

Heatmap with Seaborn

Let us make a simple heatmap with the data.

f, ax = plt.subplots(figsize=(6, 9))
sns.heatmap(sp500, 
            fmt="",
            cmap="Spectral",
            linewidths=.5, 
            ax=ax)
plt.yticks(rotation=0)
plt.xticks(rotation=45)
plt.title("S&P 500 Monthly Returns as Heatmap",size=20)
plt.savefig('Seaborn_heatmap.png')

Heatmap with Seaborn
Heatmap with Seaborn

Our first attempt at heatmap with Seaborn has got the order of months on rows wrong. Let us fix the order of months using Pandas Categorical function and sorting in the right order. We also transpose the data so as to years are in the rows and months are in columns.

# Convert the index (months) to a Categorical type with the correct order
month_order = ['January', 'February', 'March', 'April', 'May', 'June', 
               'July', 'August', 'September', 'October', 'November', 'December']

sp500.index = pd.Categorical(sp500.index, categories=month_order, ordered=True)
sp500 = sp500.sort_index()  # Sort to ensure the order is applied corr
sp500=sp500.transpose()

Heatmap with Seaborn’s heatmap() function

Let us try again to make the heatmap with Seaborn.

f, ax = plt.subplots(figsize=(6, 9))
sns.heatmap(sp500, 
            #annot=sp500.map(format_percentage), 
            fmt="",
            cmap="Spectral",
            linewidths=.5, 
            ax=ax)
plt.yticks(rotation=0)
plt.xticks(rotation=45)
plt.title("S&P 500 Monthly Returns as Heatmap",size=20)
plt.savefig('sp500_returns_heatmap.png')

Now the months are in right order as we wanted.

How to annotate heatmap with Seaborn in Python
How to annotate heatmap with Seaborn in Python

Add annotation to Heatmap with Seaborn’s heatmap() function

We can add annotation to the heatmap using annot argument. In the example below we add annotation showing the return values by formatting using a function.

# Function to round
def roundit(value):
    return f'{value:.1f}'

We use annot argument with the data in the right format using map() function to format each element of our data.

f, ax = plt.subplots(figsize=(9, 12))
sns.heatmap(sp500, 
            annot=sp500.map(roundit), 
            fmt="",
            cmap="Spectral",
            linewidths=.5, 
            ax=ax,
            cbar_kws={"shrink": 0.25})
plt.yticks(rotation=0)
plt.xticks(rotation=45)
plt.title("S&P 500 Monthly Returns as Heatmap",size=24)
plt.savefig('sp500_returns_as_annotated_heatmap.png')
Annotating Heatmap with Seaborn's heatmap()
Annotating Heatmap with Seaborn’s heatmap()

Add annotation with percent symbol to Heatmap with Seaborn’s heatmap() function

We can add percent symbol to the annotation using a similar approach shown above. We use annot argument in heatmap function. And using a function to format the value with percent symbol.

# Function to format annotation as percentage
def format_percentage(value):
    return f'{value:.1f}%'
f, ax = plt.subplots(figsize=(9, 12))
sns.heatmap(sp500, 
            annot=sp500.map(format_percentage), 
            fmt="",
            cmap="Spectral",
            linewidths=.5, 
            ax=ax,
            cbar_kws={"shrink": 0.25})
plt.yticks(rotation=0)
plt.xticks(rotation=45)
plt.title("S&P 500 Monthly Returns as Heatmap",size=24)
plt.savefig('sp500_returns_as_annotated_heatmap_with_percent_symbol.png')
Adding percent symbol to heatmap annotation with Seaborn
Adding percent symbol to heatmap annotation with Seaborn

Related posts:

Boxplot with Color Palette Set3 SeabornHow To Use Seaborn Color Palette to Color Boxplot Seaborn Scatterplot: Change edgecolor and line widthHow To Change Edge Color on Seaborn Scatter Plot? Combine Two plots into one in SeabornHow to Combine Two Seaborn plots with Shared y-axis Visualizing Missing Data with Seaborn DisplotVisualizing Missing Data with Seaborn Heatmap and Displot

Filed Under: Python, Seaborn, Seaborn heatmap Tagged With: Annotate Seaborn heatmap

Primary Sidebar

Tags

Altair barplot Boxplot boxplot python boxplot with jiitered text labels Bubble Plot Color Palette Countplot Density Plot Facet Plot gganimate ggplot2 ggplot2 Boxplot ggplot2 error ggplot boxplot ggridges ggtext element_markdown() Grouped Barplot R heatmap heatmaps Histogram Histograms Horizontal boxplot Python lollipop plot Maps Matplotlib Pandas patchwork pheatmap Pyhon Python R RColorBrewer reorder boxplot ggplot Ridgeline plot Scatter Plot Scatter Plot Altair Seaborn Seaborn Boxplot Stock Price Over Time Stripplot UpSetR Violinplot Violin Plot World Map ggplot2

Buy Me a Coffee

Copyright © 2025 · Daily Dish Pro on Genesis Framework · WordPress · Log in

Go to mobile version