In this post, we will see an example of how to make histogram with Matplotlib library in Python. Matplotlib’s pyplot module is designed to make a number of types of plots with Matplotlib. We will use pyplot module’s function hist() to make histograms with matplotlib.
Let us load Matplotlib.pyplot and Numpy library.
1 2 | import matplotlib.pyplot as plt import numpy as np |
We will generate data to make a histogram using NumPy’s random module. Here were using NumPy.random’s normal distribution function to generate random numbers for our data.
1 2 3 4 5 6 7 8 9 10 | # set seed for reproducing np.random.seed( 42 ) # specify mean mean_mu = 60 specify Standard deviation sd_sigma = 15 # number of data points n = 5000 # generate random numbers from normal distribution data = np.random.normal(mean_mu, sd_sigma, n) |
Matplotlib’ Pyplot has hist() function that takes the data as input and makes histogram. In addition to data, hist() function can take a number of arguments to customize the histogram.
Here we specify the number of bins with “bins=100″ argument and specify we want frequency histogram with ” density=False” argument. We also specify transparency levels for the fill color with alpha=0.75.
1 2 3 4 5 | # the histogram of the data n, bins, patches = plt.hist(data, bins = 100 , density = False , alpha = 0.75 ) plt.xlabel( 'data' ,size = 16 ) plt.ylabel( 'Counts' ,size = 16 ) plt.title( 'Histogram with Matplotlib' ,size = 18 ) |
pyplot’s hist function also returns three tuples with all the information needed for histogram. And be default, pyplot’s hist() function colors the histogram in blue as shown below.
